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(BACKCASTING FROM GRADUATION TARGETS.TQ '
REQUIRED ENROLLMENTS USING THE GENERALIZED
INVERSEHOF THE TRANSFORMATION MATRIX

, The'general solution to tne problem of calculating school

?enroilments at time (t-1) necessary to meet predetermined graduation or

manpower targets at time t is derived and,examined. It As based on

" the generalized inverse of the transformatio hat describes
the pupil flow through the school. The~author has appiied tnis technique
[Jaoua et al, 1974j“but at the time therE‘Was no solid theoretical
- basis for it. This paper provides one.
The field of genera]ized inverses .contains a confusion of definitions
and'names including conditional inverse, pseudoinverse. and weak
. generalized inverse The one used here is the stong or unique generalized
inverse defined by the four equations below (1 to 4). For many but not
all of the findings in this paper a weaker nonunique inverse meetihg
.- fewer than 4 of the conditions would have sufficed. To achieve sim-
plicity of presentation and‘yecause of the availability of computer
software we use only the unique one.
Symbols and conventions are now out1ined _"A" represents a
genera] matrix which transforms enro]]ments into graduations. "Gr .
is its generalized~inverse "B and "C" are two matrices whose product

~is A (A.=.BC) and whose inner dimensions are equal to the rank of all

,three. "x" is a vector of enro]lments and "y" a vector of graduates,




s

'm" and "n" are scalars representing vector or matrix dimensions.

Lambdas ("A") are eigenfa]ues, "I' is the ident1ty matrix; - and "h"

*’portion;of pérsons in grade.or institution j (often called “"state")
;\idurfng the 1nitia1 time period who move onto state i for a later time
;;-period The vectors x and y represent the number of persons “in" the '
| various states during the initial and later periods respectively. If

the‘transformation matrix A is square.and equal i's and j'$ represent

. deterministic or prescribed rather than stochastic. Furthermore, drop-

- | . .
-to be met 1nﬂsome future periodf They must then calculate the enrollments

-2-

re

each disaggregated by disoipline, program orzlabor.foree category.

-

"r' always represents the rank of a matrix and sometimes a d1mens1on

is a véctor of arb1trapy variables‘with elements h]’ hz, etc. '"Iff“

means if and" on1y if. f The word "so]ut1on" 1s used rather Toosely in
that it sometimes refers to an exact genuineysolut1on and sometimes to

annapproximat1on. The precise mean1ng is clear from the context.
The,Ea casting Problem .

. L?‘ . -
Numerous authors have modeled student flow through school systems
[See Johnstone, 1974; and Schiefelbein and Davis,,]97@ for reviews] ;”/‘ )

using matrix transformations of the type Ax = y whererAiB is the pro-

the same states then the transformation can be compounded over any number
of periods by raising A to higher powers. In the case of square A this

is similar to a Markov process except that 1t is frequently seen as

outs are often treated as a residual in which case glltA # [1]t and
populat1ons are not conserved. /
Frequently educational planners are given th1s prob]em in

>

reverse. They are provided with a set of manpower,or graduation targets

-~
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a zero graduation vector. The only such matrix 1is the .zero matrix. | (:i://s=-§
1f A" = 0.then A i¢ nilpotent which isAsufficient for singularity. e

‘the graduates prevents nilpotency but does not guarantee invertibi]ity.
Amatrix is singdlar. .

. concept of a generalized inverse matrix [Ben-Israel and Greville, 1974;

.Boullion and Odell, 1971; and Rao and Mitra 1971] with properties

3.
necessary to bring about the required number of graduations If the
transformation matrix A has equivalent row and column states and is
square and nonsingular then the solution is obtained by premu]tiplying‘.'
the graduation target vector y by the inverse ¢f A'(x = A'1y). It is
argued beiow that A is usually not&square and‘that if it is made sguare"
by including all states in both the row and column spaces it will, in
general, be singular. C . . B ' S

Any square transformation matrix that accurately represents

progress through a school or school system is nilpdt:nt and~therefore.

singu1ar. Everyone who enters a school eventuaIIQEJ aves either through
graduation dropout, or death. Thus some poWer (] the matrix A which

transforms entrants into graduates must map every entrant vector into

The addition of an absorbing state to the matrix to collect all

In genera1, if the, system contains division points where students flow

(Vi
from“one stream equally into two or more streams the transformation -

ﬂ/The prob]em of backcasting from a vector of graduatipn targets
to the prerequis‘tejenrollments requires a more general formulation '
than'that“provided by the standard inverse for a nonsingular square '

matrix. This paper shows that tne problem can be solved using the .

expressed.by-équations (1) to (84). A is any matrix and G is its gen-

eralized Ynverse. ' v

b




s ,,
. o .
AGA = A - | ()
GAG = G T | (2)
AG = ()t - (3)
6= (e | S ()

The genera11zed 1nverse G exists for a11 A and is unique [Graybill,
1969, p. 97. ] Substitution of A for G in the above shows _that the
def1n1t10n of G simplifies to the standard 1nverse for invertible A.

~ For rectangu]ar mxn matrices G has dimensions n x m. The inverse of
’ a'zero matrix is the zero matrix-with reversed dimensions.

- The following two sections develop a "generaﬂized inverse" with
- the properties needed to solve the backcasting problem. This is then
shown to be the matrix that s%tisf?es conditions (1) to (4) above. |

>

M .4 :
5 .
T

The Least Squares Criterionx

S The starting point é the matrix equation Ax = y with A, a
given mXxn transfbrmation ;atrix of-rank r; and y, a vector of gradua-
tion targets., The solutf # set which contains values of the enrollment
vector x may be empty. éf 1t‘1s, an apbroximation to x is desired:
The approximatioﬁ dsed is least squares, the sqlution that(
m1n1m1zes the squared discrepancy between the actual y and the y pre-

dicted by x. We wish to ‘e1ect an x thatgminimizes

REROR

(y-Ax) E(y-Ax)
%; (y-Ax)E(y-Ax) = -ZAt(y-Ax) =0 ) S | (6;\
Atax = Aty o o .

¢’ :
A deus ex machina is required at this point because A may not be invertible.

This is provided by the?singular value decomposition of A [Noble, 1969,




p. 333]. A is decomposed into two matrices B and C of order m x r and

r x n respectively such that A= B8C. AN fhree matri%es are of rank .
r For this ‘reason (8 B) and (cC ‘are invertib]e Substitution of
BC for A gives: '

(8c)(8c)x = (BO)Yy | . . (8) -
o - A
Premultiplying by C and regrouping gives:
' ety (ete)ex = (cctysty . (9) - .

Because of the invertibility of the leftmost terms the -expression reduces
“to: )
cx = (8%8) sty ' _ B (10) "~

-]

Equation (10) gives the least squares's01u£ion for x as far

as ve can take it. It will always exist but may not be unique. There
-’...]\ may be an infinite set of x's that reduces the squared discrepancy to -

zero or to some single positive value. 7 ' -

The Minfmum Norm Criterion

| To obtain a unique solution another criterion is needed. We

choose, to minimize the Euélidean norm of’x, using the techniques of
Lagrange multipliers. | ) ’ S
- L-xtx+21(y* )' - ()
‘ ‘where y* = (B B) . “ S (12)
The symbol y* defined by equation (12) is used for convenience. The
constraint in parentheses in (11) is just equation (10). The term b

is e.rod Qector of Lagrange mnltipliers'with the scalar,2, also Qresent
for convenience. Partial différentiation yields equetions [13) and (14).

"
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- the definition of the unique generaliz

T te o | . .
-0 , | : o (13)
ooy - =0 (1)

" From équations (13) and (14) ve obtain (15) and (16) respectively
: /
= ¢ty C ' : (15)
R ~ . v .
y = Cx > I ' = (16)
Substituting (15) 1nto (16) gives: '
y* = ccta ' _ e | | a7
velech Ty L . - (18)

Substituting (18) into (15) gives

x = ct(cct) Ty oL - “(19)
‘ Finalfy,We substitute (12) into (19) to get rid of y* and give the least

squares minimur norm solution.

ctect) (%0) Tty | - (20
* °  Equation (20) 1slnow used to define G.
6 chech) et ot . | | (21)

Substitution of BC for A and the kight~side of (21) into equations

" (1) to (4) will convince the reader that/ the above expression satisfies

"inverse.

. B :
’ J/

Some Generalized Inverse Properties

used later follow from

: BC.‘ These-are listed

A number of 1mportant results which a
the defjnition of G (21) and the fact that
! )

‘be19w;?” o | .
S oac e set)Tet | (22
i e ctech e a . | o 7 (29)
Y e v N S (24)

S
i V :
rog
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Note éﬁat AG and GA afe mxmand nxn matrices,,resb;ctiVéIy.v Equation (24),
___ which.can be.derived by sqﬁaring (23), shows that GA is an idgmpo;gntf' e
matrix. Premultiincation of (24) by (GA)'1'demonstrates that tﬁg only
noﬁsinguIar jdempotent matrix 1§ the identity matrix. 'Squéring of
(I-GA) followed by the application of‘(24) can be used to prove that
(I;GA) is also 1demﬁbtent, an important result for the next section,
Similarly, (AG) and (I-AG) are idempotent,, The expréssions for GA and . |
AG can be used to show that GA, AG, (I-GA), and (I-AG) are all symmetric.
. The expressioh for G (21) gives us the least squares minimum .
norm solution ?P the equation Ax = y as follows: , ' 4
L x.= Gy , ‘ ‘ C o (25)
' 4 But Qhatlis really needed is a solution to equation (10), that ,
is, the set of all x for which the squdred discrepancy, ((y-Ax)t(y-Ax)),
‘/reaches.its minimuﬁ-value. If the minimum squared discrepancy is zero,
the solutions are.exact; otherwise they are approximate. gither'may
be unique or indeterminate. The genera1 least squares solution is .

- presented in the following section followed by a.proof that it exactly.

L . . N
represents the complete solution to equation (10).

4

The General Least Squares Solution '\:
| The complete least squares solution to x is as follows: ‘
x = Gy + (I - GAh | [ (26)
where h is an arbitrary n x 1 column vector. Tﬁ}s is proven in two'
steps. Fjrstly, it s pkbven that (26) satisfies (10) and secondly,‘
. that for evéry X satisfyingl(lo) there is at Teast oné L-such that x

dlso satisfies (26).

Q | ‘ | 1 U




The first step begins w1tht%he substitution of (26) into (]0)
Teley + 41 - ayn) = (8te) ety ’ (27)
Substituting (23) for GA and (21) for G gives the following expression

‘for the’ 1eft hand side

c..(ct(cct ) 1(B 8) gt

Bty + (1 - ct(cct)"C) h) (28)
Removing the. outer parentheses and removing. CC (CC ) in two places

- results in considerable simp]ification.

(8%8) oty + (1 - ©) h . - (29)
The right term clearly disappears Jeaving (29) identicai_to the right
hand -side of (27). "Thus our expression for x, (26), 1s a solution to
(10). . We now prove that (26) is the complete so]utien{ '
| Statting with equation (10) we shon that every x that is a
_ “solution s also a soiution to (26) for some h. Premu]tiplying (10)
by GB gives: ' | o
eBCx = GB(3%8) Bty B » (30)
Substituting A for BC in the left and equation (22) in the right gives:
GAx = (GAG)y o ' ' (31)
> Substituting (2) into the right and rearranging yields: “ |
0 = Gy - GAx - - x (32)
=Gy + x - GAx ' | (33) .
. 'x = Gy + (I - GA)x 3 | : c (34)

"Thus any x substituted for h satisfies equations (26) and (10). This
does not imply that x can be generated only by itself. The h corresponding
to any given x is usually hot unique ,
In the formula x = Gy + (I - GA)h the first term on the right
is the solution corresponding to h,=v0. It is also the minimum norm

solution as shown in (25). The second term;provides for all other

1
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solutions. Interpreting this as a solution 'to a system of linear equations,
we see that the first term is a partic&Iar solution (exact or approximéte) _i
of‘the inhomogeneous §¥stem and the second term’is the general solution
of the homogeneous system. ~Attention is now'concentéated on-the second
term in order to determine whether the solution is unique, and if not,
how maﬁ& elements there are in the arbitrary vector, h.

3

The Indeterminacy of the Solution

In this section it is first sho&n that the rink of GA is equal

“fo the sum of its d;§g6na1 elements, called its trace. The proof depends >~
; , L

s

Zonly on GA's symmetr& and idempdtency so that we can 5156 adp1y the
finding to I and (I-GA). .This is followed by three simple proofs, that
rank(GA) = rank(A), thatjrank(I-GA) = n - rank(GA) and finally that
rank(I-GA) = nullity(A). We conclude that Lhe columns of~(I-GA)‘form
a basis for the null space of A and that the rank of, (I-GA) equals the | T
minimum number of elements in the arbitrary vector h. '

"Since GA is real, square (n x n), and symme§r3c it 1s Hermitian,

from which a number of important results follow. The eigenvectors of

"GA are all linearly independent and, in fact, are orthogonal [Noble, p. 321].
GA can be reduced to diagonél form by a transformation that is both a '

similarity and a unitary transformation.

D = Q"' (GA)Q | - f '(‘35) ¥
or D=0QfGA)Q .. : : (36)

such that, ‘ ) .
t -1 ) . ' y )
Q" =Q / | . (37)

Q is an orthonormal matrix and D is an n x n.matrix containing the\\

-eigenva1ues of pA in the diagonal and zeros elsewhere ENQple, 1969, p. 318].

.

\ - , ) P
LS . \‘ . I } !‘/
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-GA since D. and GA’ have the safie eigenvalues

-10_ o

By premu1t1p1y1ng the equat1on for e1genva1ues, (GA - AI)v %.0,

"ty GA and subst1tutinq GA for (GA) the rbader -can der1ve the equat1on

(1 -12) (GA)v -0 and conclude that eithér 2 = 1 or GAv = 0, in which

case A 0 Thus the. e1qenva1ues are all zeros and ones

Cops1der the reTationsh1p between the'ranks and e1genva1ues of

";;GA and D. " The rank of D is’ equa] to the rank of .GA because mu1t1p11cat1on

"1'of a mét‘ax (eA) by nons1ngu1ar matr1ces (Q and Q) does not change its

©ost

| :T'rank [NobIe. 1969 p. 138]. The rows of the diagbna] matr1x D can be
~1nterch§nged to put the 1dent1ty matrix 1nto the upper Teft corner and
:Qzeros qéerywhere eTSe - From th1s it becomes c1ear that the rank of D

'1s equad to the ‘sum of its e1genva1ues The same conclusion hons for

K
This brings us to an 1mportant 71nd1ng which appTies to all

'ﬁ_symmetr1c 1dempofent matr1ces Because the, ,Sum of the e1genva1ues of

: any.sgﬁare matr1x is equaT to 1ts trace [Grayb111 1969 p 223], the

rank of'GA 1s equa] toffts trace ThTS prov1des a srmpTe computationaT |

y

Lftechn1que for determ1n1ng the rankdof GA and (I GA) both of wh1jrr//\
' symmetr1c and 1dempotent '__gr,“ : |

-~

Since the trﬁce of a. matrix d1fference is. equaT to the d1fference _

'_ of the traces the rank of (I-GA) is equaT to rank([) . ra%k(GA) or S
o n - rank(GA) ' SR

It s well known that for any G and A conformab]e for muTtipTication

:rank(GA) < rank(A) [NobTe, 1969,.p/ 139] App1y1ng th1s same princip]e .
: to equat1on (1) grouped as A(GA) Au we can conc1ude that rank(GA) > rank(A)

. Therefore, rank(GA) rank(A) ..By s1m11ar reason1ng it can be shown that

A}

aTT of A, G, GA, and Ag’ have’ the same rank as do B and C.

Ue can now comb1ne theSe find1ngs to reach the fina] concTusion

. . . .
) 4 ’ V ) - 1 u} . . - c
. . . . . .
. + , [ § . . , .
. b - w : .
- : . - - .
Y i - .




-ll— A
‘ ‘of thjs section. The general solut1on contains a matr1x (I—GA) whose
. . : %
% _ .., ~ .rank is equal toh1tsvtrace. Furthermore, its rank is equal to. n - rank(GA)
l
|
|

orn -‘rank(A).: But n_- rank(A) = null1ty(A) by Sylvester s Law-of Nullity ‘

;[Glllett, l970,,p.‘ls4] " Therefore, the trace and rank of (I- GA) are ,
equal to the nullity of A By premultiplying (I-GA)h"by A and substltutln
A for AGA (2) we see that all vectors of the form (1 GA)h‘aré mapped
~into the zero vector by A. Thus, the,lhre,1n the null space of A,

- Because (I-GA) has the rank of the'null space of A, (n - rank(A)); ft.
must have exactly (n - rank(A))‘linearly independent columns. lhe -
columns of (I- GA) therefore form a basis for the null spage of A.

' | Unfortunately, this is not a m1n1mal bas1s for the null space '
of A; it contains n vectors but only (n'— rank(A)) l1nearly 1ndependent

T A<ones. This form of (I—GA) does not prov1de much 1nslght .into the structure

o of A s null space, a pract1cal and computational problem whlch is d1scussed 0

léﬁf":. Z in the section on computation.

P
The Approxlmateness of the Solution & .

ll

o -

Th1s sectlon examines the c1rcumstances under wh1ch the equation
.Ax-y yields exact and-approxlmate values for X. Flrstly, an expresslon
'f:‘for the squared discrepancy that depends only on: y and A is der1ved
| '.Thls is used to define three posslble outcomes for a g;ven A and the set
” The_squared d1screpancy is. ((y-Ax)t (y-Ax)) which 1s mlnlmal*
when X Gy + (1-GA)h. Substfgwt1ng the expression for x in the expresslon
'for the squared discrepancy gives: - : j"ﬁ - | Lo
- (y-A(2y+(I GA)h)!)glf (y-A(Gy+(I GA)h)) .M(3§) ’

_This expsesslon can be s1mpl1f1ed by substltut1ng zero for A(ImGA)




T ”;': R R o " =12- o ' 1/—;"‘~sd_
l’"\, ,(y;Agy)tt(y-AGy)-' L
vty - yteasy) - (hey)'Yy + (AGy) ey

<

This can be’ s1mp1if1ed by noting that each‘term isa scatar and, therefore,.}i '

equa1 to its. transpose and that AG is symmetric and idempotent

v '~.' oy (I-AG)y ";

(39)
. (40)

(@)

Equation (41) is the eXpression we seek, the minimum squared discrepancy

for a given A and y. Exact solution(s) exist when (41) is equal to zero

. To examine the conditions under which (41) 1s equal to Zero it

" s necessary to use the fact that a nonnegative quadratic form is equa1

to- zero if and on1y 1f'the vector valued expression produced by removing

the prepositioned vector‘from the quadratic form is zero.

T o ' " The proof oﬁ this 1nv01ves the diagonalization of (I-AG) and the, -

.xtraysformation of y and y into z and z by the orthonorma1 matrix of

eigenvectors. .
o | Y AG)y oy o PR
p ’ We' define Z as Qy Since Q is orthonorma1 zt th'l.' The?expréssion
S 'becomes N - : S e '
ztDz S |

‘where D is the diagonai matrik of eigenvaiues of (i-AGi. This expressi
< is a scalar and can be- written as follows: |, | '
C etz = 20z 700z, +
\)‘> ' where the subscripted z's represent e1ements of the vector z. Clearly
L (z1(x1z1)) =0 if and on1y if A2 = 0. Since the eigenvaiues are all
| | nonnegative the expression (z1x1z1) must also be nonnegative Thus,

the quadratic form can equal zero only if every term on the right hand

R
~-

(43)'

on

N

side of (44) is.Zero, which means that‘everylx1z1 = 0."This'is'the key

L N




to the proof. It means that:

~ Since Q' is non51ngu1ar, :

on]y va]ue of h that will generate Y.

t‘>10Qy e - o

1ff qu = Q °- 7 * - )

pay = 0 iff Qo= o |

'Comb1n1ng (45) and (46) and.substituting (I AG) for Q DQ completes the

~ proof. ' _j Lo

yE(1-AG)y = 0" iff (I-AG)y = O |
Ve can now proceed to examine the conditions under which exact

solutions exist. There is an exact solution for~a11 Yy such that.

¢ L]

X y=msh L o (48)

The* first stage of the/proof verifies that any y satisfying (48) resu]ts
in a zero va]ue for (44), the. squared discrepancy Substituting (48) into
(41) gives . _ | o |

" (AGh) (I-AG)AGh o S - (49)

'Multiplying (49) through by the post positioned AG and app]ication of (1)

" results in a zero. va]ue for the expression. ' The second stage of the proof

shows that an h exists for every y that resu]ts in a zero value of (41).

" This time the expression (I-AG)y from (47) is-set to,zero rather than the

corresponding quadratic form Manipulation of this expression quickly

shows that:

Cy=HMy T (50
‘iThis comp]ete§ the proof. Since AG is genera11y singu]ar y is not the

The results for solution approximateness can gg.summarized into.
¥
three cases, the first of which is trivial
If AG=0 the only y yielding an’ exact solution is the zero

vector. Inspection of (1) shows ‘that AG=0 if and only if A=0.

8.

o .
. —_ .
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’ - From eqanjoﬁ'(41) it i clear that if/ﬂé/= I, there fsan - .

" of y. l’

«.This library

| operations

o

. . . - : LI o : P B -
* PN . J . ,- . L]
. - . . , .
. ‘ . - . 4
. - . . - o

exacf‘so]utidh for al]‘y Since AG is m x m and idempotent this can y o,

occur only if the rank of A is m.
The: 1ntermgd1ate cases are those /or which the rank of AG 1s
greater than zero but less than m. These yféld exact. squt1ons for

those y that satisfy (50) and approxi,ate so]ut1ons for a]l other values

Computation

ca11ed w1de1y available subroutines to 'do the uest The subroutines, L
including oné}that' aﬂgu1ﬁ%¢s the uniqué génera1fzed 1nv¢rsé of a mutrix- ; e
by means of singular: vu¥ue décompoéition [NobIé, 1969, p. 535 40]; are ah a
part of the Int rnat1ona1 Mathematical and Statistical Li“FEFy\[IMSL 1974]
SO contains subroutines to do the other matrix and vector

cessary to calculate and output the complete sqution.
*** Place Figures-1 and-2 about here ***

The proSIem and solution are contained in Figures lvand 2,

respectively. The problem cunsists of one transformation matrix (A) . {.

homogeneous probIem is thg‘samg for all y, given A.

L I o, 5 - e
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. . . The information in Figure 2 permits us to analyze the solutions.
The matrix (I-GA) is 4 x 4 with a trace of 2. Its rank is, therefore,
" 2 and from this GA has a rank of 4-2=2, "A and AG are of rank 2. (I-AG)
is 5 x 5 and has a rank of 5-2=3. We conclude that there will be an
.infinite number of least square? solutions, some exact and some approximate .

depending on'y. The expressions for yt(I-AG)y shom that ¥q has exact

solutions and Ys has approximate solutjons. o .
' " The matrix (I-5A), which is a Pedundant basis»df the null space

of A, can be converted to a more convenient form by removing the unnecessary
S w~-~~vect<:ﬂ's- -A-systematic way to do this. is to reduce it to row echelon form _

*“*‘“*“*‘””*—**ftlso*knownﬁas'Hermtfe nermalfferm)eand transpose it. -After discard1nq - 4~—§¢«

C e the zero columns this gives a bas1s of (n r) column vectors with the -
'ident1ty matrix in the top (n- r) rows as shown at the bottom of Figure 2
»
Two undeslrable .types of enrdliment vectors are often generated

- . The least serious and most common contains noninteger enrollments that o

| can be rounded. Negative enrollments may occur in’ ef%her the least norm - ,
. V -

qv

ff'or the general solution.
. The. numbér of enrollment vectors tn any solution w1ll be finite

;1f only vectors with nonnegatiye 1nteger-enrollments with a f1n1te maximum

‘ : .. sum are considered ' &
' N . g
.‘/ ' - ) . . . ~
- Conclusfon -

. ' The enrollment backcasting problem Ax-y has been solVedo The - ‘
complete exact or approxjmate solution is x Gy + (I-GA)h where G is”the
\ o generallzed 1nverse of A and h is an arbftrary vector whose minimim

'dimenslon is equaT to the nullity of A. The solution 1s- exact if .

y?(I-AG)Z(='Q; otherwise, it is a least squares approximation. Figure 3

2
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summarizes the rank and order analysis of the sqlution:.

|

*** Place Figure 3 about here '** 4
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 FIGURE 1
" THE EXEMPLARY PROBLEM
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FIGURE 2
"THE SOLUTION TO THE EXEMPLARY PROBLEM -
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and of rank r.

' There are an infinite )

. FIGURE 3

. ANALYSIS OF THE GENERAL SOLUTION
e .. BY MEANS OF RANK AND ORDER
| : ) INFORMATION -

-

L I

r<m and r<n - ‘
There are an infinite number of

.nq

solutions which are exact if y=AGy
and approximate if yfAGy. A

« ' . A" .
h .
.
P
3

i

N - o .| Thetre is-'a unique

exact x f?r every y.

A

| mer, AG=T

. number of exact solu-

“approximatebif YFAGy .

m>n=f, GAsI o
There is & unique solution
which is exact if y=AGy and

tions for every y

NOTE: "G" is the unique general

’

ized inverse of A.




